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Remarks on the Star-Triangle Relation in the
Baxter—Bazhanov Model
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We show that the restricted star-triangle relation introduced by Bazhanov and
Baxter can be obtained either from the star-triangle relation of the chiral Potts
model or from the star-square relation proposed by Kashaev, Mangazeev, and
Stroganov, and give a response to a guess of Bazhanov and Baxter.

KEY WORDS: Three-dimensional integrable lattice models; Baxter—
Bazhanov model; restricted star-triangle relations; chiral Potts model;
star-square relation.

1. INTRODUCTION

Recently much progress has been made in three-dimensional integrable
lattice models. Bazhanov and Baxter generalized the trigonometric
Zamolodchikov model with two states’’) to the case of arbitrary N
states.>? The star-star relation and the star-square relation of this model
are discussed in detail in refs. 3-5. Mangazeev et al'®® enlarge the
integrable lattice model in three dimensions to the case where the weight
functions are parametrized in terms of elliptic functions. Just as the
Yang—Baxter equations or the star-triangle relations play a central role in
the theory of two-dimensional integrable models, the tetrahedron relations
replace the Yang-Baxter equations as the commutativity conditions®’ for
the three-dimensional lattice models. The restricted star—triangle relations
of the cubic lattice model introduced by Bazhanov and Baxter have the
following form:
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Equations (1) and (2) can be changed into each other. Bazhanov and
Baxter point out that it is quite possible that Eq. (1) is a particular case of
a more general relation and y is just a limiting value of a more complex
function. The purpose of this note is to give a response to this suggestion.
In Section 2 the star-triangle relation of the Baxter-Bazhanov model is
obtained either from the star—triangle relation of the chiral Potts model or
from the star-square relation introduced by Kashaev er al. In Section 3,
the result is changed into the form of Egs. (1) and (2). Note that the last
relation in Egs. (5) is different from the original one. The details will be
given also in Section 3.

2. THE STAR-TRIANGLE RELATION OF
BAXTER-BAZHANOV MODEL

As is well known, the star—triangle relation of the chiral Potts model
can be formulated as
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By taking account of the star-triangle equation (7) of the chiral Potts
model, we get
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with a,=d, =0, where R, is a scalar function. This is just the star-

triangle equation of the Baxter-Bazhanov model. If we set a,=c, =0,

similarly we have
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where R}, is also a scalar function. Both of the above two equations can
be changed into the form of Eqgs. (1) and (2). This will be discussed in
Section 3. Now we give the connection between Eq. (16) and the star-
square relation in the Baxter—Bazhanov model. Let

w(x, y, z| )= (y/z) w(x/z]l), Dla—b)=w“PN+a=bi2  (]8)

In the version of Kashaev et al'® the star-square relation can be written
as
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where the subscript 0 after the curly brackets indicates that the Lh.s. of the
above equation is normalized to unity at zero exterior spins, and the
constraint condition y, y,2524/(212, 3 ¥4) = @ should be imposed owing to
spin o € Z, but the r.hs. of the above equation is independent of o. Set
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By considering the “inversion” relation'*>'
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where 4,,, is the Kronecker symbol on Z,, we get Eq. (16) from the
start-square relation (19). Equation (17) can be obtained similarly.
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3. DISCUSSION

First, Eq. (16) can be changed into the form of Eq. (1) and Eq. (2) by
using the notations
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respectively, with d,b,=w'”?c,a,. The v, and v; (i=1,2,3,4) satisfy
Egs. (5) and (6). Here we show that the last relation in Eq. (5) is correct
and this relation is different from the one in ref. 3. Equation (17) also can
be changed into Eq. (1) by setting
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with ¢,b,=w'?d,a,. Similarly, Eq. (2) can be obtained easily from
Eq. (17). In fact, each of the relations {16) and (17) is a corollary of the
other by taking account of the “inversion” relation (21).
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In summary, in this note we obtained the star-triangle relation of the
Baxter-Bazhanov model from the star-triangle relation of the chiral Potts
model and responded to a guess proposed by Bazhanov and Baxter. We
also found a connection between the star-triangle relation and the star-
square relation in the Baxter—-Bazhanov model.
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